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The problem studied is that of the determination of the statistical dlsplace- 
ment field characteristics of the stress and strain in an anisotropic micro- 
scopically nonhomogeneous elastic body in a macroscopically homogeneous state 
of strain. The initial statistically nonlinear boundary value problem Is 
linearized by the small parameter method, and a solution in terms of the sta- 
tistical characteristics of the field of elastic moduli is given. The case 
of statistical isotropy of this field is considered. 

1. We consider a solid strained anisotropic, microscopically nonhomoge- 

neous body (e.g. a polycrystalline body) In which the microscopic nonhomo- 

genelty has a random character. Hooke's law is written in the form 

rij = Cijhelm (1.1) 

Here 7,J Is the stress tensor, el, is the tensor for small strains, and 

Cijlm is the tensor defining the elastic properties of the medium. For the 

considered microscopically nonhomogeneous body, the components of the tensor 

Cijlm are random functions of the x, coordinates and the tensor itself 

determine the random tensor field, statistical description of which is ana- 

logous to the description of a tensor of the second rank Cl]. 

Along with the mean'value ( cijl,,,) of the tensor Cijln the moment of 

interaction of the values of the tensor field at two points plays a most 

important role 

C$G% (xal, J;s2) = (Cijlm (Jsl) Cprvt (~s’)>T Cijlm = Cijlm - (Gjlm> (1.2) 

Here and below the angle brackets denote the Statistical mean of the cor- 

responding quantities. By virtue of the known symmetry of the tensor Cijlm, 

the following conditions hold for the interaction moment (1.2) : 

Cijlm = +;; = cjs,r;f = &g$ zzc &yg =1 prst &p$ _ &J; (1.3) 

For the case of statistically homogeneous field to which we will limit 

our considerations, the mean values (Cijlm) of the field are constant and 

the interaction moment (1.2), also called the correlation tensor, will be a 
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function of a single vector f. 

CT; = c~~(~*), E,= &2--X~ (1.4) 

in which the relation 

cgs;(&> = c$;sl:(--S) (1.5) 
holds. 

The strains elm are connected with the disclacements wI by the rela- 

tions 

We introduce the notation 

Then, along with (1.6) we have 

We consider a body of volume u bounded by a surface s , in a state of 

strain such that al,,, = con&. On the assumption of ergodiclty of the random 

functions Cijlm, this means that the body is in a macroscopically homogeneous 

state of strain. Then 
ui = a!mZ;n 

For the body the dimensions of which are very large in comparison with 

the scale of no~omogene~t~es of the tensor Cijl, , vi< ut on the boundary 

of the body; therefore the boundary condition may be written in the form 

WIIS= UZ Is= eZm~mI, (1.0) 

We get the boundary value problem for determination of WI by adding the 

equation of equilibrium (in the absence of body forces) 

dTij J dLCj = 0 (1.10) 

to Equations (l.l), (1.6) and (1.9). 

We suppose further that the field Cijlm may be represented in the form 

Ci:lm = <Qilm> + &jlm l&gm =1: Cijlrn) (1.11) 

where the bojrtn are random restricted functions of the coordinates and CL 

is a small parameter, not of a random character. Then, aftx- taking account 

of (1.7) and (1.8) and of the symmetry of the tensor Cijlm, (1.1) may be pre- 

sented,in the form 

zij = (<Ci~Zm> + abijlm) Elm + 2 
( 1 

(1.12) 
m 

From (l.lO), (1.12) and (1.7), (l-9) we obtain the boundary value problem 

for the determination of the vector VI 

a2v1 

(cWm) azj azm - = -a & bijl,n Elm + 2 
3 [ ( 11 9 Vl Is -z= 0 (1.13) 

m 

Here the macroscopic strains &I,,, are considered as given. 
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2. By virtue of the randomness of the tensor bijlm and the vector u1 

the boundary value problem (1.13) is statistically nonlinear. It Is linear- 

ized if its solution is represented in the form of a series in powers of the 

small parameter d co 

k-o 

By sulbtitution of (2.1) into (1.13) and equating coefficients of the 

equal powers of c , we find 

7 vp Is = 0 P-2) 

a+,(l) 
(Cijlm) w = 

3 m 
up) Is = 0 (2.3) 

aavl(k) 
(Cijld ax, ax 

- = -$(b.l,g), 
3 m 

up) J, = 0 (k = 2,3,...) 

Because of the uniqueness of the boundary value problem (2.2) we have 

(") zzz 0 , Vl and (2.3) is finally written in the form 

a%p 
(Cijlm) &-gp- = - 

abijlm 
Elm7 ’ 

up) Is = 0 
3 m 

<Cijlm > 
a%p 

arjaz, = - 6 (bijlmac) , Al Is = 0 (k = 2,3,...) 

(2.4) 

Relations (2.4) represent in themselves successive recurrent statistically 

linear boundary value problems determining the terms In the expansion (2.1). 

gY representation of the solutions to the boundary value problems (2.4) 

in terms of a Gre$n tensor Gi,,(zs, zS1), which is one and the same for all 

the problems, we have [2] 

up (X8) = El, s Gin (x83 5s1) 
%jlm (%l) dv 

(u) 
axi 1 

(2.5) 

vi(k) (x8> = \ Gin (zs, x,l) a$ [bnizm bsl) 
atqk-‘) (2,‘) 

ax,1 I dvl (k = 2,3,... ) 

(0) 3 

The functions Vi") (k = 2, 3, . . ,.) may be expressed in terms of the ten- 

sors Gin and bnjem. (2) 
For example, for Vi , we find 

?li@) (2,) .= i&t SC Gin(xst x:,l) 
qJ(X81’ xgal aa 

as 1 

m 
(0) (u) 

ax; ax,2 [bnjlm(zsl) bprst (~s2)ldw-h+ 

+ &St ss Gin (zs, xsl) 
a2c1p (xyl. xs2) a 

axi ax,1 as tb,jzm (xsl) bprst (xs”)l dvl dvz 
(u) (U) 

ip 

It is-seen from the structure of Formulas (2.5) that the functions nil') 

for any k are linear functions of the mean strains E!~L. We find therefore 

for JJ‘ (2.1) 



The quantities q,E (5s) are determined by the Green tensor C,, and the 

deviatllon tensor d ijzm. for the elastic moduli by virtue of (2.5) and (1.11). 

In particular, we have 

Having the solution of (2-6) It is easy to find the statistical charac- 

teristics of the vector displacements. In particular, for the moments of 

displacements of the nth order 

we have 

From this we find the second order moments for n = 2 

Vij (zsl, 2,“) = eprest ,,Bl <(pix;p’ (x:s’) vpjg”l) (x?)> (2.7) 

3. We f5nd the statistical characteristics of the stress tensor Cl] 

Si,; '= (Tij) 7 Pi,j ,... iI, j,, = iPi,j, txS1> ’ * . Pini,, lxSn)) (Jlij = zii - Sij) (3.1) 

We proceed from the relations (1.12), which we rewrite In the form 

We find from (3.2) 

We have from (2.6) 

(3.3) 

(3.4) 

(3.5) 

By Introduction of the notation 
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we obtain from (3.3) 

‘$j = f(‘S,j&) + ($ijs*>) ‘st* Pij = q*jsf’sf 

(3.6) 
rlijst zz ‘ijst + (Cijlm) qlstm + *ijst - (*ijst) 

The nth order moment of the stress tensor (3.1) is written in the form 

Pi,j,...i j nn 
In particular, for n = 2 we have 

For certain purposes It is necessary to establish the connection between 

the 2nd order moments of stress and strain 

Pijkl = (Pij (d) P,, b?)) 3 rjjkl = tr,, (dl, 7kl (%% 
We get, after transformations and after making use of (3.3) to (3.5) 

P ijlm E (Cijpr) (C/m8t > rprst + (I$$ + $y$“r’> Epr&st (3.8) 
Here 

(3.95 

P f$= C&i -f (Cijkn) ('{mst(%?(Pkprn (281)) $_ (Clmkn) (C&,r(~?)Q)kstn (xs2)) 

vi;; = (Ci;pr ('S') *[mst ('Y')> + CctLst (2s")$ijpr(xS1)) -f- 

+ @ijkn) (~k~~~t~~)~~~~* b?) + @fmkn) @ksfn fzs")$+jpr(b,l)) + 

+ i*ijpr('al)ZItlms~ tz?)> -($~jp,(2s1)) <9l,,t (XSa)) 

The tensors &$ and Yijpl lmst in (3.9) are determined by the Green ten- 
sors of the original problem and the statistical properties of the elastic 

moduli fields cijlnl, in which if the expansion (3.4) 2s limited to only the 

first term, the values of u depend only on the second order moments of the 

tensor 'CijlllL and the values of v on the third or fourth order moments. 

If moments of higher order may be neglected, i.e. if the condition 

1 q;,y / -g 1 p”fg I (3.10) 

holds, then relation (3.8) takes the form 

f'ijlrn = C’ijp,) cC[>fral) 7pi~,Si + ~~~~.‘~~~E~~ (3.11) 

Condition (3.10) is satisfied, in particular, in case of small microscopic 

nonhomogeneity when the deviations C'iji;: of the elastic modull are small 

compared with their mean value (Ci,li:), i.e. if 

4. We now assume the body under consideration to be unbounded, and the 
field 'ijl,n of elastic moduli to be statistically isotropic cl]. In thin 
case the tensor (c,,:,,~) will be the isotropic tensor 

<"ij,;,> --_ !I$$,;, .j- /':! (6,,,Sj! .:- 6,,6jk) 

where b,, is a unit tensor of thf‘ second rank and the Green tensor C,, in 
(2.5) may be written in explicit ‘arm [2] 
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By using the method expounded by Robertson [3], we find further that for 
a statistically isotropic field Cijkl under conditions (1.3) and (1.5), the 
correlation tensor (1.4) has the form 

In the case of small nonhomogeneity, when expansion (3.4) may be limited 
to a single term and when condition (3.10) is fulfilled, the coefficents In 
relations (3.6) and (3.8) connecting the statistical characteristics of the 
state of stress and strain as well as those In (2.7) and (3.7). are deter,,.l 
mined only by the Green tensor and by the first two moments ('i;h_i) and ’ i.tlif 

of the tensor field of the elastic moduli; relations (4.1) and (4.2) permit 
their calculation. 

We also consider the case where the correlation tensor (.1.4) does not 
depend on the orientation of the vector T, and is only a function of Its 
modulus [' z p-;;;,. The above is the case related to a strong Isotropy of the 
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field, ‘ijkl’ * It has been considered [4] in connection with an investiga- 
tion of the elastic modulus of a polycrystalllne body. For a strongly iso- 
tropic field .ciiklr taking account of the symmetry in (1.3) and (1.5), we 
find 

The calculation of the coefficients entering into relations (3.6) and 
(3.8) is appreciably slmpllfied In the case of strong Isotropy. In particu- 
lar, if the expansion(3.4) is limited to one term, calculation for (qijsr) In 
(3.6) gives 

(q%jef> = - 4i3 Jt (hl + '/sha)$$ (O)f s/15 r&cgy (0) (4.3) 

where A1 and X, 
(4.1) by Formulas 

are expressed in terms of the constants p1 and p2 in 

PI + 3Pa 
11= 8np2(p1+2pz) ' 

PI + Pa 
A2 = 8nlLa(p1+ 2pa) 

Relation (4.3) coincides with the result obtained in a different way in 
r41. 
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